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Problems of the Standard Cosmology

Horizon: CMB temperature T = 2.728 K, ∆T/T ∼ 10−5. Causal horizon at

decoupling ctdec subtends ≃ 1◦.

Flatness: Friedmann equation: Ω − 1 = K/a2H2 ∝ a (a2) matter (radiation).

At e.g. T = 1 MeV Ω − 1 ≃ 10−18.

Relics: Extensions of Standard Model contain stable massive particles m ≫ 102

GeV. E.g. GUT monopoles, SUGRA gravitinos.

Fluctuations: How? Why 10−5?

These features of the Universe are understandable in inflationary cosmology .

But ... Big Bang initial singularity?
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Inflationary Cosmology

Inflationa means:

• Early Universe had an accelerating phase ä > 0

• Huge increase in size: ‘number of e-foldings’ Ne ≡ ln(aend/ai) ≃ 60

• Quantum fluctuations in a massless scalar field generate perturbations.b

aStarobinski 1980; Sato 1981; Guth 1981; Linde 1982; Hawking & Moss 1982; Albrecht & Steinhardt

1982,...
bGuth & Pi 1982; Starobinskii 1982; Hawking 1982, Bardeen, Steinhardt & Turner 1983,...



Cosmology 4 Mark Hindmarsh (Sussex) 4

Scalar fields in cosmology

S = −
∫

d4x
√−g (gµν∂µφ∂νφ + V (φ))

Recall FRW metric for flat Universe gµν = diag(−1, a2(t))

Field equation: φ̈ + 3
ȧ

a
φ̇ − 1

a2
∇2φ + V ′(φ) = 0

Energy density: ρ =
1

2
φ̇2 +

1

2

1

a2
(∇φ)2 + V (φ)

Pressure: p =
1

2
φ̇2 +

1

6

1

a2
(∇φ)2 − V (φ)
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Slow roll inflation

Postulate that the scalar field is

• Homogenous: φ = φ(t)

• Overdamped: |φ̈| ≪ 3H|φ̇| (“slow roll”)

Sufficient conditions for slow roll:

ǫ =
1

2
m2

P

(

V ′(φ)

V (φ)

)2

≪ 1, |η| =

∣

∣

∣

∣

m2
P

V ′′(φ)

V (φ)

∣

∣

∣

∣

≪ 1

Potential must be “flat” or φ ≫ mP.

Energy density: ρ = 1
2 φ̇2 + V (φ) = V (φ)(1 + 1

3ǫ)

Pressure: p = 1
2 φ̇2 − V (φ) = −V (φ)(1 − 1

3 ǫ)

Equation of state: p ≃ −(1 − 2
3ǫ)ρ

Solution to Friedmann eqn. a(t) ∝ t1/ǫ (→ exp(Ht), H =
√

V/3m2
P).
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Amount of expansion

Quantified by ‘number of e-foldings’ Ne ≡ ln(aend/ai)

Integrate

3
ȧ

a
φ̇ = −V ′(φ), or

V

m2
P

dφ

d lna
= −V ′(φ)

Result:

Ne = ln

(

aend

ai

)

=
1

m2
P

∫ φend

φi

V

V ′
dφ

Example:

V =
1

2
m2φ2 gives Ne =

1

2

(φend − φi)
2

m2
P
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End of inflation

• End of inflation: ǫ = 1 or |η| = 1

• Example: V = 1
2m2φ2, ǫ = 2m2

P/φ2, giving φend =
√

2mP.

• Field oscillates: φ → φ0 sin(mt)/t, a(t) → t2/3 (p = 0 bosons).

• Field decays into other species - (p)reheating

• Thermalisation to energy density ρrh < V (φend), temperature Trh

• NB Trh must allow nucleosynthesis (1 MeV)

• NB Trh must allow baryogenesis (T > 100 GeV)a

aor cold electroweak baryogenesis Smit & Tranberg 2004
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Solving the horizon problem

Consider mode with comoving momentum k, physical inverse wavenumber

λ(t) = a(t)/k, compared with Hubble length LH(t) = H−1.

Inflation: a(t) ∝ t1/ǫ, H−1 = ǫt

Radiation: a(t) ∝ t1/2, H−1 = 2t

Matter: a(t) ∝ t2/3, H−1 = 3t/2

During inflation the mode’s physical wavelength grows faster than the Hubble length.

Let t1(k) be time at which λ(t) = H−1 during inflation (“horizon exit”)

During standard radiation and matter dominated eras Hubble length grows faster.

Let t2(k) be time at which λ(t) = H−1 during standard era (“horizon entry”).

Points not now in causal contact were in same Hubble volume du ring inflation
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Sufficient inflation

Modes entering horizon now λ0(t0) = a(t0)/k0 = H−1
0 .

Require they first crossed horizon (time t1) during inflation.

Horizon exit for k0 mode: a(t1)k
−1
0 = H−1(t1).

Hence:
a(t1)

a(t0)
=

H0

H(t1)
Assume adiabatic expansion between reheat and today:

Ne(t1) = 67+ln

(

Trh

1016 GeV

)

+
1

6
ln

g(Trh)

g(T0)
+

1

2
ln

V (t1)

Vend
+

1

2
ln

Vend

ρrh
−1

3
ln

arh

aend

ln(V (t1)/Vend) = 2ǫNe(t1)

Require at least about 60 e-folds of inflation
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Solving the flatness problem

Recall Friedmann equation Ω − 1 = K/a2H2

Inflation H2 ∝ a−2ǫ Ω(t) − 1 ∝ a−2(1−ǫ)

Reheating/matter H2 ∝ a−3 Ω − 1 ∝ a.

Radiation H2 ∝ a−4 Ω − 1 ∝ a2.

Ω(t0) − 1

Ω(t1) − 1
≃ e−2Ne(t1)

arh

aend

(

aeq

arh

)2
a0

aeq
∼ e−10

(

arh

aend

)

−
4

3

Have estimated ρrh

Vend
∼

(

arh

aend

)

−3

Even if inflation begins at t1 with Ω(t1) 6= 1 Universe is now very flat.
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Disposing of unwanted relics

Universe expands in volume at least e3Ne(t1) ∼ 1087 times.

Any unwanted relics must not be created at T <
∼ Trh.

E.g. monopoles Trh < TGUT ∼ 1016 GeVa

E.g. gravitinos Trh < 109 GeVb

aZel’dovich & Khlopov 1978, Preskill 1979
bEllis et al 1984; Khlopov & Linde 1984
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Fluctuations from scalar field

Field equation: φ̈ + 3
ȧ

a
φ̇ − 1

a2
∇2φ + V ′(φ) = 0

Consider fluctuations around slow-roll: φ(x) = φ̄(t) + ϕ(x)

ϕ̈ + 3
ȧ

a
ϕ̇ − 1

a2
∇2ϕ + V ′′(φ̄)ϕ ≃ 0

Introduce conformal time: adτ = dt, such that ds2 = a2(τ)(−dτ2 + dx2).

ϕ′′ + 2
a′

a
ϕ′ −∇2ϕ + 3ηa2H2ϕ ≃ 0

(

′ =
∂

∂τ

)



Cosmology 4 Mark Hindmarsh (Sussex) 13

Mode functions

Expand in Fourier modes (assume flat Universe);

ϕ(t,x) =

∫

d̄ 3k

2k

(

akfk(t)eik·x + a∗

k
f∗

k
(t)e−ik·x

)

where functions fk satisfy

f ′′

k
+ 2

a′

a
f ′

k
+

(

k2 + 3ηa2H2
)

fk = 0

Writing fk = uk/a(τ),

u′′

k
+

(

k2 − a′′

a
+ 3ηa2H2

)

uk = 0

Zeroth order solution: fk(τ) =
kτ − i

akτ
e−ikτ
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Density fluctuations

Fluctuations in field → fluctuations in energy density: ρ(x) ≃ V (φ(x))

Hence density contrast δ(x) =
ρ(x) − ρ̄

ρ̄
=

V ′(φ̄)

ρ̄
ϕ(x)

Density contrast fluctuation:

〈

δ2(x)
〉

=

(

V ′(φ̄)

ρ̄

)2
〈

ϕ2(x)
〉

= ǫ

〈

ϕ2(x)
〉

m2
P
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Quantum vacuum fluctuations

Field operator

ϕ̂(t,x) =

∫

d̄ 3k

2k

(

âkfk(t)eik·x + â∗

k
f∗

k
(t)e−ik·x

)

with [âk, â∗

k′ ] = 2ωkδ(k− k′) Mean square vacuuma fluctuation:

〈0|ϕ̂2(x)|0〉 =

∫

d̄ 3k

2k
|fk(t)|2 =

∫

dk

k

(

H

2π

)2

(1 + k2τ2) =

∫

dk

k
Pϕ(k)

Inflation happens as τ → 0−: hence power spectrum Pϕ →
(

H
2π

)2
and

Pδ(k) → ǫ

m2
P

(

H

2π

)2

INFLATION GENERATES SCALE-INVARIANT DENSITY FLUCTUATIONS

a
ak|0〉 = 0 - Bunch-Davies vacuum
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From density fluctuations to the CMB

• Density fluctuations δk cause gravitational potential fluctuations Φk

• Fluctuations in intensity of CMB radiation arriving here, now through

– Gravitational redshift - Sachs-Wolf effect

– Acoustic oscillations - “Doppler peaks”

– Oscillations are coherent - all started at t ≃ 0 with same phase.
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CMB perturbations and large scale structure

• Simple model for CMB angular power spectrum & 3D galaxy power spectrum:

• Pδ = A(k/k0)
ns−1 for all species i. (Scalar) spectral index ns ≃ 1.

WMAP 3 angular power spectruma

aHinshaw et al. (2006)

Sloan Digital Sky Survey (2006)a

aTegmark et al. (2006), Perceval et al (2007)


