Niš Lectures on Cosmology 4

Mark Hindmarsh

Department of Physics & Astronomy

University of Sussex

m.b.hindmarsh@sussex.ac.uk

Problems of the Standard Cosmology

Horizon: CMB temperature T=2.728 K, $\Delta T/T\sim 10^{-5}$. Causal horizon at decoupling $ct_{\rm dec}$ subtends $\simeq 1^{\circ}$.

Flatness: Friedmann equation: $\Omega - 1 = K/a^2 H^2 \propto a \ (a^2)$ matter (radiation). At e.g. T = 1 MeV $\Omega - 1 \simeq 10^{-18}$.

Relics: Extensions of Standard Model contain stable massive particles $m \gg 10^2$ GeV. E.g. GUT monopoles, SUGRA gravitinos.

Fluctuations: How? Why 10^{-5} ?

These features of the Universe are understandable in **inflationary cosmology**.

But ... Big Bang initial singularity?

Inflationary Cosmology

Inflation^a means:

- Early Universe had an accelerating phase $\ddot{a} > 0$
- Huge increase in size: 'number of e-foldings' $N_e \equiv \ln(a_{
 m end}/a_{
 m i}) \simeq 60$
- Quantum fluctuations in a massless scalar field generate perturbations.^b

^aStarobinski 1980; Sato 1981; Guth 1981; Linde 1982; Hawking & Moss 1982; Albrecht & Steinhardt 1982,...

^bGuth & Pi 1982; Starobinskii 1982; Hawking 1982, Bardeen, Steinhardt & Turner 1983,...

Scalar fields in cosmology

$$S = -\int d^4x \sqrt{-g} \left(g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + V(\phi) \right)$$

Recall FRW metric for flat Universe $g_{\mu\nu} = \text{diag}(-1, a^2(t))$

 $\begin{array}{ll} \mbox{Field equation:} & \ddot{\phi} + 3\frac{\dot{a}}{a}\dot{\phi} - \frac{1}{a^2}\nabla^2\phi + V'(\phi) = 0 \\ \mbox{Energy density:} & \rho = \frac{1}{2}\dot{\phi}^2 + \frac{1}{2}\frac{1}{a^2}(\nabla\phi)^2 + V(\phi) \\ \mbox{Pressure:} & p = \frac{1}{2}\dot{\phi}^2 + \frac{1}{6}\frac{1}{a^2}(\nabla\phi)^2 - V(\phi) \\ \end{array}$

Slow roll inflation

Postulate that the scalar field is

- Homogenous: $\phi = \phi(t)$
- Overdamped: $|\ddot{\phi}| \ll 3H |\dot{\phi}|$ ("slow roll")

Sufficient conditions for slow roll:

$$\epsilon = \frac{1}{2}m_{\rm P}^2 \left(\frac{V'(\phi)}{V(\phi)}\right)^2 \ll 1, \quad |\eta| = \left|m_{\rm P}^2 \frac{V''(\phi)}{V(\phi)}\right| \ll 1$$

Potential must be "flat" or $\phi \gg m_{\rm P}$.

Energy density:
$$\begin{split} \rho &= \frac{1}{2}\dot{\phi}^2 + V(\phi) = V(\phi)(1 + \frac{1}{3}\epsilon) \\ \text{Pressure:} & p &= \frac{1}{2}\dot{\phi}^2 - V(\phi) = -V(\phi)(1 - \frac{1}{3}\epsilon) \\ \text{Equation of state:} & p &\simeq -(1 - \frac{2}{3}\epsilon)\rho \\ \text{Solution to Friedmann eqn.} & a(t) &\propto t^{1/\epsilon} (\to \exp(Ht), H = \sqrt{V/3m_{\text{P}}^2}). \end{split}$$

Amount of expansion

Quantified by 'number of e-foldings' $N_e \equiv \ln(a_{\rm end}/a_{\rm i})$ Integrate

$$3\frac{\dot{a}}{a}\dot{\phi} = -V'(\phi), \quad \text{or} \quad \frac{V}{m_{\rm P}^2}\frac{d\phi}{d\ln a} = -V'(\phi)$$

Result:

$$N_e = \ln\left(\frac{a_{\rm end}}{a_{\rm i}}\right) = \frac{1}{m_{\rm P}^2} \int_{\phi_{\rm i}}^{\phi_{\rm end}} \frac{V}{V'} d\phi$$

Example:

$$V = \frac{1}{2}m^2\phi^2$$
 gives $N_e = \frac{1}{2}\frac{(\phi_{end} - \phi_i)^2}{m_{\rm P}^2}$

End of inflation

- End of inflation: $\epsilon = 1$ or $|\eta| = 1$
- Example: $V = \frac{1}{2}m^2\phi^2$, $\epsilon = 2m_{\rm P}^2/\phi^2$, giving $\phi_{\rm end} = \sqrt{2}m_{\rm P}$.
- Field oscillates: $\phi \to \phi_0 \sin(mt)/t$, $a(t) \to t^{2/3}$ (p = 0 bosons).
- Field decays into other species (p)reheating
- Thermalisation to energy density $ho_{
 m rh} < V(\phi_{
 m end})$, temperature $T_{
 m rh}$
- NB $T_{\rm rh}$ must allow nucleosynthesis (1 MeV)
- NB $T_{\rm rh}$ must allow baryogenesis ($T>100~{\rm GeV}$)^a

^aor cold electroweak baryogenesis Smit & Tranberg 2004

Solving the horizon problem

Consider mode with comoving momentum **k**, physical inverse wavenumber $\lambda(t) = a(t)/k$, compared with Hubble length $L_H(t) = H^{-1}$. Inflation: $a(t) \propto t^{1/\epsilon}$, $H^{-1} = \epsilon t$ Radiation: $a(t) \propto t^{1/2}$, $H^{-1} = 2t$ Matter: $a(t) \propto t^{2/3}$, $H^{-1} = 3t/2$

During inflation the mode's physical wavelength grows faster than the Hubble length. Let $t_1(k)$ be time at which $\lambda(t) = H^{-1}$ during inflation ("horizon exit")

During standard radiation and matter dominated eras Hubble length grows faster. Let $t_2(k)$ be time at which $\lambda(t) = H^{-1}$ during standard era ("horizon entry").

Points not now in causal contact were in same Hubble volume during inflation

Sufficient inflation

Modes entering horizon now $\lambda_0(t_0) = a(t_0)/k_0 = H_0^{-1}$.

Require they first crossed horizon (time t_1) during inflation.

Horizon exit for k_0 mode: $a(t_1)k_0^{-1} = H^{-1}(t_1)$.

Hence: $\frac{a(t_1)}{a(t_0)} = \frac{H_0}{H(t_1)}$

Assume adiabatic expansion between reheat and today:

$$N_e(t_1) = 67 + \ln\left(\frac{T_{\rm rh}}{10^{16} \text{ GeV}}\right) + \frac{1}{6}\ln\frac{g(T_{\rm rh})}{g(T_0)} + \frac{1}{2}\ln\frac{V(t_1)}{V_{\rm end}} + \frac{1}{2}\ln\frac{V_{\rm end}}{\rho_{\rm rh}} - \frac{1}{3}\ln\frac{a_{\rm rh}}{a_{\rm end}}$$

 $\ln(V(t_1)/V_{\text{end}}) = 2\epsilon N_e(t_1)$

Require at least about 60 e-folds of inflation

Solving the flatness problem

Recall Friedmann equation $\Omega - 1 = K/a^2 H^2$ Inflation $H^2 \propto a^{-2\epsilon} \quad \Omega(t) - 1 \propto a^{-2(1-\epsilon)}$

Reheating/matter $H^2 \propto a^{-3}$ $\Omega - 1 \propto a$.

Radiation $H^2 \propto a^{-4}$ $\Omega - 1 \propto a^2$.

$$\frac{\Omega(t_0) - 1}{\Omega(t_1) - 1} \simeq e^{-2N_e(t_1)} \frac{a_{\rm rh}}{a_{\rm end}} \left(\frac{a_{\rm eq}}{a_{\rm rh}}\right)^2 \frac{a_0}{a_{\rm eq}} \sim e^{-10} \left(\frac{a_{\rm rh}}{a_{\rm end}}\right)^{-\frac{4}{3}}$$

Have estimated $\frac{\rho_{\rm rh}}{V_{\rm end}} \sim \left(\frac{a_{\rm rh}}{a_{\rm end}}\right)^{-3}$

Even if inflation begins at t_1 with $\Omega(t_1) \neq 1$ Universe is now very flat.

Disposing of unwanted relics

Universe expands in volume at least $e^{3N_e(t_1)} \sim 10^{87}$ times.

Any unwanted relics must not be created at $T \leq T_{\rm rh}$.

- E.g. monopoles $T_{\rm rh} < T_{\rm GUT} \sim 10^{16} \ {\rm GeV^a}$
- E.g. gravitinos $T_{\rm rh} < 10^9 {\rm ~GeV^b}$

^aZel'dovich & Khlopov 1978, Preskill 1979 ^bEllis et al 1984; Khlopov & Linde 1984

Fluctuations from scalar field

Field equation: $\ddot{\phi} + 3\frac{\dot{a}}{a}\dot{\phi} - \frac{1}{a^2}\nabla^2\phi + V'(\phi) = 0$

Consider fluctuations around slow-roll: $\phi(x) = ar{\phi}(t) + arphi(x)$

$$\ddot{\varphi} + 3\frac{\dot{a}}{a}\dot{\varphi} - \frac{1}{a^2}\nabla^2\varphi + V''(\bar{\phi})\varphi \simeq 0$$

Introduce conformal time: $ad\tau = dt$, such that $ds^2 = a^2(\tau)(-d\tau^2 + d\mathbf{x}^2)$.

$$\varphi'' + 2\frac{a'}{a}\varphi' - \nabla^2\varphi + 3\eta a^2 H^2\varphi \simeq 0 \qquad \left(' = \frac{\partial}{\partial\tau}\right)$$

Mode functions

Expand in Fourier modes (assume flat Universe);

$$\varphi(t,\mathbf{x}) = \int \frac{d^3k}{2k} \left(a_{\mathbf{k}} f_{\mathbf{k}}(t) e^{i\mathbf{k}\cdot\mathbf{x}} + a_{\mathbf{k}}^* f_{\mathbf{k}}^*(t) e^{-i\mathbf{k}\cdot\mathbf{x}} \right)$$

where functions $f_{\mathbf{k}}$ satisfy

$$f_{\mathbf{k}}'' + 2\frac{a'}{a}f_{\mathbf{k}}' + \left(k^2 + 3\eta a^2 H^2\right)f_{\mathbf{k}} = 0$$

Writing $f_{\mathbf{k}} = u_{\mathbf{k}}/a(\tau)$,

$$u_{\mathbf{k}}'' + \left(k^2 - \frac{a''}{a} + 3\eta a^2 H^2\right)u_{\mathbf{k}} = 0$$

Zeroth order solution: $f_{\mathbf{k}}(\tau) = \frac{k\tau - i}{ak\tau}e^{-ik\tau}$

Density fluctuations

Fluctuations in field \rightarrow fluctuations in energy density: $\rho(x) \simeq V(\phi(x))$

Hence density contrast $\delta(x)=\frac{\rho(x)-\bar{\rho}}{\bar{\rho}}=\frac{V'(\bar{\phi})}{\bar{\rho}}\varphi(x)$

Density contrast fluctuation:

$$\left\langle \delta^2(x) \right\rangle = \left(\frac{V'(\bar{\phi})}{\bar{\rho}} \right)^2 \left\langle \varphi^2(x) \right\rangle = \epsilon \frac{\left\langle \varphi^2(x) \right\rangle}{m_P^2}$$

Quantum vacuum fluctuations

Field operator

$$\hat{\varphi}(t,\mathbf{x}) = \int \frac{d^3k}{2k} \left(\hat{a}_{\mathbf{k}} f_{\mathbf{k}}(t) e^{i\mathbf{k}\cdot\mathbf{x}} + \hat{a}_{\mathbf{k}}^* f_{\mathbf{k}}^*(t) e^{-i\mathbf{k}\cdot\mathbf{x}} \right)$$

with $[\hat{a}_k, \hat{a}^*_{k'}] = 2\omega_k \delta(k - k')$ Mean square vacuum^a fluctuation:

$$\langle 0|\hat{\varphi}^2(x)|0\rangle = \int \frac{d^3k}{2k} |f_{\mathbf{k}}(t)|^2 = \int \frac{dk}{k} \left(\frac{H}{2\pi}\right)^2 (1+k^2\tau^2) = \int \frac{dk}{k} \mathcal{P}_{\varphi}(k)$$

Inflation happens as $au \to 0^-$: hence power spectrum $\mathcal{P}_{\varphi} \to \left(\frac{H}{2\pi}\right)^2$ and

$$\mathcal{P}_{\delta}(k) \to \frac{\epsilon}{m_P^2} \left(\frac{H}{2\pi}\right)^2$$

INFLATION GENERATES SCALE-INVARIANT DENSITY FLUCTUATIONS

 $^{\mathsf{a}}a_{\mathbf{k}}|0
angle=0$ - Bunch-Davies vacuum

From density fluctuations to the CMB

- Density fluctuations $\delta_{\mathbf{k}}$ cause gravitational potential fluctuations $\Phi_{\mathbf{k}}$
- Fluctuations in intensity of CMB radiation arriving here, now through
 - Gravitational redshift Sachs-Wolf effect
 - Acoustic oscillations "Doppler peaks"
 - Oscillations are coherent all started at $t \simeq 0$ with same phase.

CMB perturbations and large scale structure

- Simple model for CMB angular power spectrum & 3D galaxy power spectrum:
- $\mathcal{P}_{\delta} = A(k/k_0)^{n_s-1}$ for all species *i*. (Scalar) spectral index $n_s \simeq 1$.

^aTegmark et al. (2006), Perceval et al (2007)