Is the Universe held together with cosmic string?

Mark Hindmarsh

Dept. of Physics & Astronomy Sussex University

m.b.hindmarsh@sussex.ac.uk

Collaborators:

N. Bevis, M. Kunz, J. Urrestilla [astro-ph/0605018,astro-ph/0702223,0704.3800]

+ A. Liddle [0711.1842]

S. Borsanyi [0712.0300], P. Saffin [hep-th/0605014], P. Salmi [0712.0614]

G. Vincent & N.Antunes, [hep-ph/9708427]

G. Vincent & M. Sakellariadou [astro-ph/9612135]

Introduction

- Cosmic strings^a are linear distributions of mass-energy in the universe.
- Mass per unit length μ , tension T. Normally $\mu = Tc^2$
- Dynamics: acceleration of curvature: wave equation,
- In theories of high energy physics they may be
 - Fundamental (string theory): zero width
 - Solitonic (field theory): non-zero width
- ullet Made in the early universe? b $t\sim 10^{-36}$ s, $\mu\sim 10^{20}$ kg/m, $w\sim 10^{-30}$ m
- If formed, still here: O(1) "infinite" string, unknown distribution of closed loops

^aHindmarsh & Kibble (1994); Vilenkin & Shellard (1994); Kibble (2004)

^bKibble (1976); Zurek (1996); Rajantie (2002); Yokoyama (1989); Kofman, Linde, Starobinski (1996); Jones, Stoica, Tye (2002); Sarangi & Tye (2003); Copeland, Myers, Polchinski (2003); Dvali & Vilenkin (2003)

Two models of a universe filled with string

Small-scale string dynamics not understood: Significant uncertainty in predictions

Observational signals from strings

Small theoretical disagreement (factor 10)

Cosmic Microwave Background, density perturbations ^a

Large theoretical disagreement (factor 10^{lots})

- Gravitational radiation^b
- Cosmic rays^c
- Gravitational lensing^d

^aZel'dovich (1980); Vilenkin (1981); Kaiser & Stebbins (1984); Landriau & Shellard (2004); Wyman et al (2005); Bevis et al (2006,2007)

^bVachaspati & Vilenkin (1985); Hindmarsh (1990); Damour & Vilenkin (2000,2001,2005)

^cBhattarcharjee (1990); Sigl (1996); Protheroe (1996); Berezhinksi (1997); Vincent, M.H., Sakellariadou (1998); Wichowski, MacGibbon, Brandenberger (1998)

^dVilenkin (1984); Hindmarsh (1989); de Laix & Vachaspati (1996,1997)

Danger! Natural Units

$$\hbar = c = k_B = 1$$

 $10^{-27} \, \mathrm{kg}$ [Mass] GeV proton mass

 GeV^{-1} 10^{-15} m [Length] proton size

 GeV^{-1} $10^{-24} s$ proton light crossing time [Time]

 $10^{13}~\mathrm{K}$ GeV [Temperature] proton pair creation temperature

 $M_{
m P}=1/\sqrt{G}$ $\sim 10^{19}~{
m GeV}$ Planck mass:

 $m_{\mathrm{P}} = 1/\sqrt{8\pi G} \quad \sim 2 \times 10^{18} \; \mathrm{GeV}$ Reduced Planck mass:

 $\sim 10^{16}~{
m GeV}$ $M_{
m GUT}$ Grand Unification (GUT) scale:

 $\sim 10^4~{\rm GeV}$ $E_{
m LHC}$ Large Hadron Collider (LHC) energy:

Quantum Field Theory in a Nutshell

Quantum fields can behave either like particles or classical waves.

E.g. electromagnetic field can behave either as a photon or a radio wave:

Classical behaviour possible only for bosons (spin 0, 1, 2 ...).

- Spin 0: scalar field ϕ (e.g. Higgs field)
- Spin 1: gauge field A_{μ} (e.g. electromagnetic field)
- Spin 2: gravitational field $g_{\mu\nu}$

Cosmic string zoo: field theory

Gauge/local string

Nearest living relative:

Type II superconductor flux tube

Global string

Nearest living relative:

superfluid vortex

String theory in a nutshell

- Fundamental object is a string.
- Strings may be open or closed.
- "Particles" are tiny strings.

- Strings may also be macroscopic.
- Superstrings have supersymmetry:
 fermions ← bosons.
 (Loading ...)
- Superstrings live in 10 spacetime dimensions.

Cosmic string zoo: string theory

- Fundamental strings F-strings
- Extended objects D-branes
- IIA (IIB): 2, 4, 6, 8 (1, 3, 5, 7, 9) dimensions
- F-strings end on D-branes, (D1 = D-string)
- Bound states, junctions: (p,q)-strings & more
- Formation: D3-\overline{D3}, tachyon field theory^b
- Evolution: analytic & numerical modelling^c

^cTye, Wasserman, Wyman (2005); Copeland & Saffin (2006); Hindmarsh & Saffin (2006)

^aCopeland, Myers, Polchinski (2004); Firouzjahi, Leblond, Tye (2006); Dasgupta, Firouzjahi, Gwyn (2007); Leblond, Wyman (2007)

^bSarangi & Tye (2002); Dvali & Vilenkin (2004); Barnaby, Berndsen, Cline, Stoica (2005)

Formation of strings (Kibble-Zurek) (2+1)D model

PMF, University of Niš, 29/8/08

Real scalar field $\phi(\mathbf{x},t)$, symmetry $\phi \to -\phi$. Lagrangian density:

$$\mathcal{L} = \frac{1}{2}\dot{\phi}^2 - \frac{1}{2}(\nabla\phi)^2 - V(\phi), \qquad V(\phi) = V_0 - \frac{1}{2}\mu^2(T)\phi^2 + \frac{1}{4!}\lambda\phi^4.$$

T(t) is a control parameter

(e.g. temperature, inflaton)

$$\mu^2(T > T_c) < 0, \, \mu^2(T < T_c) > 0$$

Phase transition at $T = T_c$.

Field eqn. (Minkowski space)

$$\frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi - \mu^2(T)\phi + \frac{1}{3!}\lambda \phi^3 = 0$$

"String" solutions $\phi = v \tanh(\mu x)$

Formation of strings in 2D: numerical simulation

$$\ddot{\phi} + \eta(t)\dot{\phi} - \nabla^2\phi + (\phi^2 - \mu^2(t))\phi = 0$$

Initial conditions: $\phi(\mathbf{x})$ Gaussian random variable on each lattice site

(Loading ...)

Gauge field theories: Abelian Higgs model

PMF, University of Niš, 29/8/08

$$S = -\int d^4x \left(D_{\mu} \phi^* D^{\mu} \phi + V(\phi) + \frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu} \right)$$

Complex scalar field $\phi(\mathbf{x},t)$, vector field $A_{\mu}(\mathbf{x},t)$

Covariant derivative $D_{\mu} = \partial_{\mu} + iA_{\mu}$.

Potential
$$V(\phi) = \frac{1}{2}\lambda(|\phi|^2 - v^2)^2$$
.

"Relativistic Ginzburg-Landau"

Temporal gauge ($A_0 = 0$) field equations

$$\ddot{\phi} - D_i^2 \phi + \lambda (|\phi|^2 - v^2)\phi = 0,$$

$$\ddot{\phi} - D_i^2 \phi + \lambda (|\phi|^2 - v^2) \phi = 0,$$

$$\frac{\partial}{\partial t} E_i + \epsilon_{ijk} \partial_j B_k - ie(\phi^* D_i \phi - D_i \phi^* \phi) = 0,$$

Vortex solutions in the Abelian Higgs model

Static finite energy (2D) cylindrically symmetric:

$$\phi = v f(\rho) e^{i\theta}, \quad A_{\theta} = a(\rho)$$

Energy density:

$$\rho = |D_i \phi|^2 + V + \frac{1}{2}B^2$$

Magnetic field:

$$B = a'(\rho)$$

Visualising Abelian Higgs string simulations

(Loading ...)

Isosurfaces of constant energy density. Size: 256^3 , lattice spacing $0.5m^{-1}$

Computing 1976 to 2008

Kibble, J. Phys A (1976): Topology of cosmic domains and strings

Best 1976: Cray 1 120 MHz 64-bit vector processor, 250 MFlops, 8 MB RAM 58^3 requires 7.8 MB

Our simulations on Cosmos 152 1.6GHz Itanium2, 790 GFlops, 456GB RAM 1024^3 requires $40~\mathrm{GB}$

Best 2008: Blue Gene/L 106,496 700MHz PowerPC, 478 TFlops, 74TB RAM 8192^3 requires $20~\mathrm{TB}$

COSMOS

UK National Cosmology Computer 148 1.6Ghz Itanium II 444 Gb

Visualisation

COSMOS

SAN XFS server

Parallel simulations of field theories: LATfield

- Public C++ library of objects for parallel classical lattice fields^a
- Rewrite of MDP/FermiQCD^b
- Objects:

Lattice: Takes care of boundary conditions and domain decomposition

Field: Template - can have real, complex, user-defined object.

Site: Accesses elements of field

Parallelisation by compiler switch

^aBevis & Hindmarsh http://www.latfield.org/

^bMassimo di Pierro et al., http://www.fermiqcd.net/

Abelian Higgs model simulations: string length scale

Scaling: $L/V \propto \tau^{-2}$

Network scale: $\xi = \sqrt{(V/L)}$

Hence $\xi \propto au$

Lattice spacing: $\Delta x = 0.5$

Time step: $\Delta t = 0.1$

Volume: 1024^3

Couplings: $\lambda = 2, e = 1$

Masses: $m_s = m_v$

String network scaling hypothesis

- String network characteristic scale ξ (= $\sqrt{V/L}$, i.e. average curvature radius)
- Network scaling hypothesis: $\xi = x_* t$ (x_* constant O(1))
- String energy density: $\rho_s \simeq \mu/\xi^2$
- Total energy density: $\rho_t \sim 1/Gt^2$:
- ullet String density fraction: $\Omega_s \sim G \mu/x_*^2$
- Grand Unification: $G\mu \sim 10^{-6}$

Scaling: extrapolate from $t_i \sim 10^{-36} \ {\rm s} \ {\rm to} \ t_0 \sim 3 \times 10^{17} \ {\rm s} \ {\rm today}$

Modelling cosmic superstrings

Field theory model with junctions^a

(global symmetry)

^aHindmarsh & Saffin (2006)

Strings and the Cosmic Microwave Background

 $-200 < \Delta T < 200~\mu\mathrm{K}$

Angular power spectrum C_ℓ

Explanation - Inflation

Energy density of Universe dominated by homogeneous scalar field $ar{\phi}(t)$

- ullet Scalar field equation: $\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$
- ullet Friedmann equation: $H^2=rac{8\pi G}{3}(V(\phi)+rac{1}{2}\dot{\phi}^2)$
- "Slow roll" $|\ddot{\phi}| \ll |\dot{\phi}|$: overdamped evolution
- Accelerated expansion: $a(t) \sim t^{\text{huge}}$,
- Quantum fluctuations in field:

$$\phi(x) = \bar{\phi}(t) + \varphi(t, \mathbf{x})$$

Quantum fluctuations in energy density:

$$\delta \rho_{\phi}(t, \mathbf{x}) = V'(\bar{\phi})\varphi(t, \mathbf{x})$$

Inflation (Power-law Λ CDM): just 6 numbers

CMB angular power spectrum $C_\ell = C_\ell^{\mathrm{inf}}(H_0,\Omega_b,\Omega_m, au,A_s,n_s)$

	Parameter		Λ CDM
1	Hubble parameter	H_0 (km/s/MPc)	74 ± 3
2	"Baryon" density fraction	$100\Omega_b$	4.2 ± 0.2
3	Total matter density fraction	$100\Omega_m$	24.0 ± 1.7
4	Optical depth to last scattering	au	0.093 ± 0.029
5	Perturbation amplitude	$10^{10} A_{ m s}^2$	22 ± 2
6	Perturbation tilt	$n_{ m s}$	0.961 ± 0.017

NB Inflation gives $\Omega_{\Lambda}=1-\Omega_{m}$ **NB** Matter perturbations $\left.\left<\delta\rho^{2}\right>\right|_{d_{h}}=A_{s}^{2}(d_{h}/d_{h0})^{1-n_{s}},\,d_{h}$ = Horizon distance

Inflation + strings: just 7 (or 6) numbers

$$C_{\ell} = C_{\ell}^{\text{inf}}(H_0, \Omega_b, \Omega_m, \tau, A_s, n_s) + C_{\ell}^{\text{string}}(G\mu)$$

Parameter	Λ CDM	+strings	HZ+strings
H_0 (km/s/MPc)	73	82	82
$100\Omega_b$	4.2	3.7	3.7
Ω_m	24.0	17.9	17.9
au	0.092	0.11	0.11
$10^{10} A_{ m s}^2$	22	20	20
$n_{ m s}$	0.958	1.00	1
$_{10}$	_	0.099	0.099
$\Delta\chi^2$	0	-3.9	-3.9
Evidence	1	1.2 ± 0.1	7.3 ± 1.2

NB HZ = Harrizon-Zel'dovich model of scale-free perturbations $n_{\rm s}=1$ NB $f_{10} \propto (G\mu)^2$, amplitude-squared of string-induced perturbations

Abelian Higgs string C_ℓ s vs. WMAP3 and BOOMERanG

Multipole moments:

$$a_{lm} = \int d\Omega \Delta T(\mathbf{n}) Y_{lm}^*(\mathbf{n})$$

Angular power spectrum:

$$C_l = \frac{1}{2l+1} \sum_{m=-l}^{l} |a_{lm}|^2$$

Anisotropy power:

$$l(l+1)C_l/(2\pi)$$

Top: Strings normalised to WMAP3 ($\ell=10$)^a

Bottom: Differences from best-fit Λ CDM

^aBevis, Hindmarsh, Kunz, Urrestilla (2006)

Results slide for string-o-philes

Fit to CMB data (WMAP3, Boomerang, CBI, ACBAR, VSA)^a

$$G\mu = (0.65 \pm 0.10) \times 10^{-6}$$

Ingredients for a stringy universe:

- Hubble parameter $H_0 = 82 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- Baryon fraction $\Omega_b = 3.7 \times 10^{-2}$
- Scale-invariant (Harrison-Zel'dovich) power spectrum $n_s=1$

^aClassical Abelian Higgs model

Results slide for string-o-phobes

Fit to CMB (7 parameters)^a

- + Hubble Key Project ($H_0 = 72 \pm 8 \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$)
- + D abundance & Big Bang Nucleosynthesis ($\Omega_{\rm b}h^2=2.14\pm0.20\times10^{-2}$)

$$G\mu < 0.7 \times 10^{-6}$$
 (95%)

^aClassical Abelian Higgs model

Mark Hindmarsh (Sussex)

Conclusions

- Strings are common in high energy physics theories
- If strings were every formed, they would still be here.
- Field theory calculations of string Cosmic Microwave Background signal
- Results:
 - (CMB only fit) $G\mu = 0.65 \pm 0.10 \times 10^{-6}$ ($n_{\rm s} = 1$, high $\Omega_{\rm b} h^2$, h)
 - (CMB + Hubble + BBN) $G\mu \lesssim 0.7 \times 10^{-6}$ (95% C.L.)
 - Strings improve CMB in range $300 < \ell < 700$:
- ullet Technology spin-off: parallel N-dimensional field theory simulations: LATfield
- Future: WMAP 5-year data, Planck CMB space mission launch 2008.
- Future: distinguishing between superstrings and field theory strings?

News (791) ▼ Hacker ▼ Google Sussex U ▼ PlusNet ▼ Physics ▼ Admin ▼ Teaching ▼ Smile Travel ▼ Shopping ▼ Music ▼

arXiv.org > astro-ph > arXiv:astro-ph/0702223

Search or Article-id (Help | Advanced search)

All papers 💠

Astrophysics

Fitting CMB data with cosmic strings and inflation

Neil Bevis, Mark Hindmarsh, Martin Kunz, Jon Urrestilla

(Submitted on 8 Feb 2007 (v1), last revised 25 Jan 2008 (this version, v3))

We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt n, we find a 2-sigma detection of strings: $f_10 = 0.11 + /-0.05$, where f_10 is the fractional contribution made by strings in the temperature power spectrum (at multipole I = 10). CMB data give moderate preference to the model n = 1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable n and these extra data, we find that $f_{-}10 < 0.11$, which corresponds to G mu $< 0.7x10^{-6}$ (where mu is the string tension and G is the gravitational constant).

Comments: 4 pages, 2 figures, 1 table; matches journal version

Astrophysics (astro-ph); High Energy Physics - Theory (hep-th) Subjects:

Journal reference: Phys. Rev. Lett. 100, 021301 (2008) DOI: 10.1103/PhysRevLett.100.021301

Report number: Imperial/TP/07/NB/01

arXiv:astro-ph/0702223v3 Cite as:

Submission history

From: Neil Bevis [view email]

Download:

- PostScript
- PDF
- Other formats

Current browse context:

astro-ph

< prev | next > new | recent | 0702

References & Citations

- SLAC-SPIRES HEP (refers to | cited by)
- NASA ADS
- CiteBase

Bookmark (what is this?)

